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is the outer  edge of the boundary l aye r ;  
is  the body su r face ;  
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ENTRAINMENT OF A VISCOPLASTIC FLUID BY 

A MOVING SURFACE 

E. P. Shul'man and V. I. Baikov UDC 532.135 

The thickness of the film remaining on the surface of a vertical plate during its extraction from 
a viscoplastic liquid is determined theoretically. 

One of the m o s t  w idesp read  methods of superpos ing  a l aye r  of lubr ica t ing  fluid on a solid in di f ferent  
technological  p r o c e s s e s  is to ex t r ac t  the solid f r o m  the fluid at  a constant  veloci ty  v 0. P r o c e s s e s  to obtain 
photographic  m a t e r i a l s ,  magne t ic  r e c o r d e r  t apes ,  cable insulat ion,  etc .  a re  examples .  

Le t  an infinite pla te  be ex t r ac t ed  ver t i ca l ly  upward at  a constant  veloci ty  v 0 f r o m  a sufficiently l a rge  
v e s s e l  with a fluid. F a r  f r o m  the pla te  the fluid is at r e s t  and i ts  su r face  is hor izonta l .  Le t  us take this h o r i -  
zontal  su r face  as  the or ig in  x = 0 and le t  us d i r ec t  the y axis pe rpend icu la r ly  to the plate and the x axis  upward 
in the d i rec t ion  of plate  motion.  

The th ickness  of the f i lm remain ing  on the plate sur face  as it  is ex t rac ted  f r o m  the fluid is de te rmined  by 
the in terac t ion  between the in terna l  f r ic t ion  f o r c e s ,  the m a s s  f o r c e s ,  and the su r face  tension force .  The de -  
gree  of influence of each  of these  fo r ce s  on the quantity of fluid being en t rapped  is de te rmined  by the physica l  
p r o p e r t i e s  of the fluid, the s ta te  of the su r f ace ,  the veloci ty  of plate  ex t rac t ion ,  and a number  of other  fac to rs .  

According to the L a n d a - L e v i c h - D e r y a g i n  theory [1, 2], the whole f i lm can be sepa ra ted  into two do-  
ma ins :  1) a zone located sufficiently high above the meniscus  and ent ra ined  d i rec t ly  by the body (the f r ee  
boundary of the fluid is a l m o s t  pa ra l l e l  to the plane of the plate  in this domain);  2) the zone of the men i scus ,  
which is de formed  somewha t  because  of the plate motion (the shape of the sur face  is taken approx imate ly  coin-  
cident with the s ta t ic  meniscus) .  The solutions obtained for  each  domain mus t  then be joined,  where  the junc-  
tion condition is  continuity of the su r face  cu rva tu re  in the domain of smal l  cu rva tu res .  

Following this path,  we de te rmine  the th ickness  of the f i lm remain ing  on the plate sur face  during i ts  ex -  
t rac t ion  f r o m  a v i scop las t i c  fluid. 

Thus ,  we have the s ta t ic  men i scus  equation for  zone 2: 

A. V. Lykov Insti tute of Heat and Mass T r a n s f e r ,  Academy of Sciences of the Be loruss ian  SSR. Minsk.  
T rans l a t ed  f r o m  Inzhene rno-F iz i chesk i i  Zhurnal ,  Vol. 34, No. 3, pp. 507-513, March,  1978. Original a r t i c le  
submit ted March 14, 1977. 
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dah 
dx  z 

[, 
pgx  

= - - ,  0-) 

w h e r e  h is  the f i lm t h i c k n e s s ,  r is  the coe f f i c i en t  of  s u r f a c e  t ens ion ,  and p is the dens i ty  of  the fluid. Af te r  a 
s ingle  in t eg ra t ion  of  (1) and subs t i tu t ion  of  the boundary  condi t ion as  x ~ 0 

dh 
dx  = pgxZ - -  1. 

+ t'< i l 2<, [l k ~ /  j 

Hence ,  f r o m  (1) we find the  c u r v a t u r e  of  the  s t a t i c  m e n i s c u s  s u r f a c e  in the  j unc tu re  d o m a i n  

(2) 

The equat ion  of  mot ion  in zone 1 has  the f o r m  

d.x ---~- n..O = O" 

with the boundary  condi t ions  

O~..~. __ + c; dah 
Oy Pg d-~r = o (4) 

U = Vo for y = 0 ,  (5) 
= 0  for y = h .  (6) 

Le t  us s e l e c t  the c l a s s i c a l  S h v e d o v -  B ingham m o d e l  as  the rheo log i ca l  equat ion  of s ta te  of  a v i s c o p l a s t i c  f luid 

Ou Ou 
",:= -- To -}- ,a ~-~-y , x>%; - - < 0 ;  

Oy (7) 

Ou 
- -  = O, "~<'o;  
Oy 

w h e r e  T is the s h e a r  s t r e s s ,  r 0 is the y i e ld  poin t ,  and # is the p l a s t i c  v i s c o s i t y ,  

I n t eg ra t i ng  (4) with (6) and (7) taken into accoun t ,  we obtain  

_t_ du ( p g _  6 d3h 
- , o .  , ,  - (8) 

We d e t e r m i n e  the doma in  of  v i s c o p l a s t i c  flow f r o m  (8) and the second  condi t ion Ou/Oy = 0 of  (7) f o r  y - 6: 

i.e., 

x O = (Pg d3h \ 
- -  6 d-~-) (h - -  6), 

(9) 

w h e r e  A i s  t h e  z o n e  o f  q u a s i s o l i d  f l o w  

8 = h - -  a, (tO) 

A =  
% 

d~h (II) 
pg - -  o - -  

dx 3 

Equat ion  (8) with the boundary  condi t ion (5) has  the solut ion 

u=vo-[ T~ y---~(pg--(~d3h ~ 
�9 

(12) 
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We determine  the thickness of the fluid l aye r  entra ined by the plate f rom the continuity equation. 
case it  has the fo rm  

6 h 

0 6 

which, taking account of (12), (II), and (i0) can be represented equivalently as 

Q = vO + TO~ 
2p 

h s [ dSh '~ T3o ( p g  d'~h ~-~ 
-- --O~x3) , 

In this 

(13) 

(14) 

% hS(  3 a I A s ) 
-- ] (15) 

Q = ~ r  3~ a 2 1, + - ~  - ~  ' 

Q=voh__ % 52( 1 -  3~) (16) 

The general solution of the nonlinear differential equation (14) cannot possibly be obtained. Let us hence 
consider some particular (degenerate) cases. 

1. Let 6/11 << 1, i.e, the zone of quasisolld flow is much broader than the shear flow. Then we find from 
(16) 

Q --  v o h - -  % b ~. (17) 
2~ 

The fi lm thickness  at  a la rge  distance f rom the fluid surface  in the vesse l  tends to the constant l imit  h 0 
equal to h = Q/v 0. Then f rom (17) 

! 

8 = [ 2~Vo (h-- ho) IT.  
1. "~o 

(18) 

From this and from (I0) and (II) there follows 

l 

o 

% d.r ~ T o % 
(19) 

Let Us introduce dimensionless variables and parameters 

into (19). Then 

! 

z . . . . . .  , L =  = - -  B =  f ~ ~  o (20) 
h o h o o (p g oj 

! I 

, d3L Oo ,21, 

The boundary conditions can be wri t ten  in the fo rm 

dL d2L (22) L--~I, - - - - + 0 , - - - + 0  for z--~oo. 
dz dz 2 

In the case (2Ca/BD0) I/2 << 1, the m e m b e r  (2Ca/BD0) I/2 (L - 1)I/2/L can be neglected in (21) as compared  
with one, i.e., 

Do 
l dSL - - ~  L - -1  (23) 

BD o dz 3 L 

Let  us seek  the l inear ized  solution of the equation obtained. 
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Let  us se t  (D0/B)L = (D0/B)(1 + g) = D0/B in the  r ight  s ide,  where  e(z) is a sma l l  p a r a m e t e r .  
we a r r i v e  at  a s impl i f ied  di f ferent ia l  equation 

1 dSL 
Do I 
B 

BDo dz 3 L 

Consequently,  

(24) 

which is s impl i f ied  by the introduction of the new d imens ion less  coordinate  

I 

to the equation: 

I t  has  been shown in [1] that  

tPL 1 (25) 
d~. s L 

d•l L - . .  (26) 2.35. 

follows f r o m  (25) under  the boundary conditions (22). 

Since equal i ty of the s ta t ic  and dynamic  c u r v a t u r e s  of the men i scus  is the condition for  juncture  of the 
solut ions ,  we obtain f r o m  (3) and (26) 

2 (27 )  
2.35 (D~ - -  BDo) ~ = V - 2  D o. 

Solving the a lgeb ra i c  equation (27) for  D 0, we find 
] 

D O = B - -  0.109 [(l + 18.32 B) -~  - -  II. (28) 

T h e r e f o r e ,  t he re  is a domain  of ex t rac t ion  ve loc i t i es  Ca << BD 0 for  a v i scop las t i c  fluid where  the l aye r  
th ickness  is independent of the ex t rac t ion  ve loc i ty ,  as should hold in a v i scous  fluid. In this case  this quantity 
is de t e rmined  by the su r f ace  tension coeff icient  a ,  the yie ld  point r0, the densi ty O, and the acce l e ra t ion  of 
g rav i ty  g. 

2. Le t  [1 - (3/2)(~v/h)i >>(1/2)(~3/h~). We then  have f r o m  (15) 

% h a (  3 A) 
1 . (29 )  

Q = v~ 31 x A 2 h 

Let  us a s s u m e  that  

1 3 A A 3 A 1 
- - - > i  l o - - = ,  h ~ . ~  _ < _ .  Y h - -  2h 3 h 2 (3o) 

T h e r e f o r e ,  (29) is val id for  the sufficiently genera l  case  for  which the domain of quasisol id  flow can be of the 
s a m e  o r d e r  as the v i scop las t i c  flow zone�9 

Af te r  manipula t ing (29) with (10) taken into account ,  we obtain 

h 3 d 3h p gh 3 + % hz 
3~ dx ~ 3~, ~ + voh = Q. (31) 

The l aye r  th ickness  h, sufficiently high above the men i scus ,  tends asympto t i ca l ly  (as x --" ~) to the con-  
s tant  value h 0. All the de r iva t ives  of h with r e s p e c t  to x hence tend to zero .  Substituting the appropr ia te  
quant i t ies  into (31), we find 

�9 0 g _  p z  h~o. (32) 

Let  us combine (31) and (32). By introducing the d imens ion less  v a r i a b l e s  and p a r a m e t e r s ;  
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2 =  - -  

l 

ho -~o a 

% 
(p g c)'/~ (33) 

we a r r ive  at  the differential  equation 

with the boundary conditions 

LS d3L = ( l - - L ) +  BD~ D~o (I_L3) (34) 
3Ca dz ~ - ~ -  ( I - - L 2 ) - - - ~ -  

L-.*I ,  dL---+O, d2L -+0 for z--+oo. (35) 
dz dz z 

Let  us seek the l inear ized solution of the problem (34) and (35). Let us set L = 1 + e, where e(z) is a 
smal l  p a r a m e t e r ,  and we find by neglecting t e rms  grea te r  than the quadrat ic  in e 

BD o I~o ") L s dSL--~ = (1 - -  L) 1 --t- - ~  Ca. ,  

Let  us introduce the new var iable  

(36) 

l 

t, = 3Ca 1 q- ~ - -  Ca 
(37) 

Then 

daL 1 - -  L 
dZ? L s 

(3s) 

It has been shown in [1, 2] that 

dZL I = 0.64 
dL2 I L~| (39) 

follows f rom the differential  equation (38) with the boundary conditions (35). 
equality of (3) and (39), yields 

2 

0.64 3ca l -b  C a - - - C a  

o r  

The juncture condition, i .e . ,  the 

2 

D o = 0.94 (Ca -l- BDo - -  D~) 3-- (40) 

As follows f rom (3), formula (40) is valid in the case 2B < Do, and determines  the layer  thickness h 0 for 
known values of the rheological  p a r a m e t e r s  r 0 and p, the velocity of extract ion v0, the surface  tension coeffi-  
cient a,  and given values of p and g. 

For  Ca >> BD 0 we find f rom (40) that 
2 

D o = 0.94 (Ca -- D~) -5-, (41) 

i .e. ,  the film thickness  is independent of the plast ic  p roper t i e s  of the fluid. 

Thus,  the layer  thickness of a v iscoplas t ic  fluid is independent of Ca for  extract ion velocit ies Ca << BD 0 
and is determined f rom (27), which yields D o = fi(B). When Ca ~> BD0, the film thickness is independent of B 
and is calculated f rom the relat ionship (41), where D O = f2(Ca). 

In the general  case of an a rb i t r a ry  velocity of plate extract ion,  it is possible to write 

D O = f (B, Ca). (42) 
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Fig. 1. Dependence of the film thickness n 0 on the ex-  
t ract ion velocity Ca for the plast ici ty pa ramete r  B: 1) 
0.02; 2) 0.1; 3) 0.5. 

Let  us consider  the rheological  equation of state (7). It contains the equations of state of a viscous fluid 
(T o = 0) and of a plast ic  body (~t = 0) as l imit  cases ,  and combines them additively. The relat ions (28) and (41) 
yield a solution of the problem in these two l imit  cases.  Hence, let us represen t  the general  interpolation fo r -  
mula in the form of a sum of the two l imit  cases  (28) and (41) according to the form of the rheological  law (7): 

Z)0 -= fl (B) ~- • (Ca). (43) 

Certain resul ts  of calculations using (43) are  represented  in Fig. 1. Formula  (43) goes over into the 
l imit  cases  Ca << BD 0 and Ca >> BD0, respect ively ,  in (28) and (41), which are  given a theoret ical  foundation. 
Moreover ,  the resu l t s  determined by means  of (43) and (40) agree quite well in the domain where the solution 
(40) is valid. It can therefore  be hoped that (43) possesses  sufficient accuracy  and cor rec t ly  t r ans fe r s  the de-  
pendence of D o on Ca and B in the whole range of numbers  Ca. 
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