Indices

e is the outer edge of the boundary layer;
w is the body surface;
t is the transition point;
L is the laminar sublayer boundary;
i is the inner sublayer;
0 is the outer sublayer.
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ENTRAINMENT OF A VISCOPLASTIC FLUID BY
A MOVING SURFACE

E, P. Shul'man and V. I. Baikov UDC 532,135

The thickness of the film remaining on the surface of a vertical plate during its extraction from
a viscoplastic liquid is determined theoretically.

One of the most widespread methods of superposing a layer of lubricating fluid on a solid in different
technological processes is to extract the solid from the fluid at a constant velocity v,. Processes to obtain
photographic materials, magnetic recorder tapes, cable insulation, etc. are examples.

Let an infinite plate be extracted vertically upward at a constant velocity v, from a sufficiently large
vessel with a fluid. Far from the plate the fluid is at rest and its surface is horizontal. Let us take this hori-
zontal surface as the origin x = 0 and let us direct the y axis perpendicularly to the plate and the x axis upward
in the direction of plate motion,

The thickness of the film remaining on the plate surface as it is extracted from the fluid is determined by
the interaction between the internal friction forces, the mass forces, and the surface tension force, The de-
gree of influence of each of these forces on the quantity of fluid being entrapped is determined by the physical
properties of the fluid, the state of the surface, the velocity of plate extraction, and a number of other factors.

According to the Landa— Levich —Deryagin theory [1, 2], the whole film can be separated into two do-
mains: 1) a zone located sufficiently high above the meniscus and entrained directly by the body (the free
boundary of the fluid is almost parallel to the plane of the plate in this domain); 2) the zone of the meniscus,
which is deformed somewhat because of the plate motion (the shape of the surface is taken approximately coin-
cident with the static meniscus). The solutions obtained for each domain must then be joined, where the junc-
tion condition is continuity of the surface curvature in the domain of small curvatures.

Following this path, we determine the thickness of the film remaining on the plate surface during its ex-
traction from a viscoplastic fluid.

Thus, we have the static meniscus equation for zone 2:
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da*h
dx* pgx

T

where h is the film thickness, o is the coefficient of surface tension, and p is the density of the fluid. After a
single integration of (1) and substitution of the boundary condition as x — 0

dh
dx pgx?
- = —_— lv 2
CRITE (2
@)
dx
Hence, from (1) wefind the curvature of the static meniscus surface in the juncture domain
@hy o _ (20 )ir. @)
dxz n=0 [
The equation of motion in zone 1 has the form
ot dth
— o— =10 4
E» Pg+o )
with the boundary conditions
u=yv, for y=020, (5)
=0 for y=nh ©
Let us select the classical Shvedov— Bingham model as the rheological equation of state of a viscoplastic fluid
T"—-—‘L'o—f—p-(?—ti, T>> Ty ou <0;
dy Y n
% _ 0, 1<
dy
where 7 is the shear stress, 7, is the yield point, and u is the plastic viscosity,
Integrating (4) with (6) and (7) taken into account, we obtain
du d®h
—_—y g = — — 86— i(h—y). 8
ot (pg dxa)( ) ®)

We determine the domain of viscoplastic flow from (8) and the second condition du/dy = 0 of (7) for y = 63

%= (pg—c(‘%) (h—b), ®
i.e.,
§=h—A, (10
where A is the zone of quasisolid flow
dx®

Equation (8) with the boundary condition (5) has the solution

3, 2
uzvo-kﬁy_%(pg_cd_’i) (hyﬁy_)_ (12)
1
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We determine the thickness of the fluid layer entrained by the plate from the continuity equation. In this
case it has the form

5 "
— ! -
Q= Sudy + yu‘H dy = consts (13)
b 3

which, taking account of (12), (11), and (10) can be represented equivalently as

P (o —o ) - 2 (op—ott)”
Qv+ 3‘1( og dxa) = ( pg—ots) (14)
e 3A 1A
_n kR34 1A 1
Q=vh 3 A ( WD) 3) (19)
-4) ~
—ph— 0§ 3k 16
S

The general solution of the nonlinear differential equation (14) cannot possibly be obtained, I.et us hence
consider some particular (degenerate) cases.

1. Let 6/h <1, i.e., the zone of quasisolid flow is much broader than the shear flow. Then we find from
(16)

Q=voh—2'—;62. am

The film thickness at a large distance from the fluid surface in the vessel tends to the constant limit hy
equal to h = Q/vy. Then from (17)

1
§= [2"'00 (h— hy) ] 2 (18)
T

From this and from (10) and (11) there follows

Lo
1ﬂ=L€_{h_[2£&(h_ho,]2}‘. (19)

T, dx* T T,

Let us introduce dimensionless variables and parameters

X h TN T, (pg)
=X, L=—,Ca= B=_"2 _ D =h (2L
z Iy hy o pgn'”? ‘\o (20)
into (19). Then
1 1
1 dL =&—{L 1‘_(2&«1)"2‘ (L—])T}‘l- 1)
BD, dz® B BD, L

The boundary conditions can be written in the form

dL a2L

L—-1, — -0, —0 for 75 oo. (22)
dz dze

In the case (2Ca/BDy)2 < 1, the member (2Ca/BDy)!/2 (L - 1)1/2 A, can be neglected in (21) as compared
with one, i.e.,
D,
1 &L B

L—
BD, dz* L

Let us seek the linearized solution of the equation obtained.

(23)
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Let us set (Dy/B)L = (Dy/B)(1 +£)=Dy/Bintherightside, where &(z) is a small parameter, Consequently,
we arrive at a simplified differential equation

3 “20‘ —1
1 &L _ B _ (24
BD, dz® L
which is simplified by the introduction of the new dimensionless coordinate
1
D 17
A=—1{ BD, | -2 —1 2
to the equation:
oL __ 1 (25)
dr? L
It has been shown in {1] that
d2L
—_dl.z . = 2.35. (26)

follows from (25) under the boundary conditions (22).

Since equality of the static and dynamic curvatures of the meniscus is the condition for juncture of the
solutions, we obtain from (3) and (26)

2
2 2
2.35(Df —BD,) ° =V 2 D, &

Solving the algebraic equation (27) for D, we find
1

D, = B—0.109{(l -+ 18.32 B)  —1]. 28)

Therefore, there is a domain of extraction velocities Ca < BD, for a viscoplastic fluid where the layer
thickness is independent of the extraction velocity, as should hold in a viscous fluid. In this case this quantity
is determined by the surface tension coefficient ¢, the yield point 7, the density o, and the acceleration of
gravity g.

2, Let [1 - (3/2)&/h)] > (1/2)(4¥1%). We then have from (15)

T, h® 138 A )
=y h——0 —= 29
Q=y, 3 A ( 2 h (29)
Let us assume that
3 A A3 A 1 '
] — > —>10———, hence . -~ ___,
2 BT ons PR 30)

Therefore, (29) is valid for the sufficiently general case for which the domain of quasisolid flow can be of the
same order as the viscoplastic flow zone.

After manipulating (29) with (10) taken into account, we obtain

S s &@®h pght X T2
3pn dx? 3u 2u

+yh=Q. (31

The layer thickness h, sufficiently high above the meniscus, tends asymptotically (as x — =) to the con-
stant value hy. All the derivatives of h with respect to x hence tend to zero. Substituting the appropriate
quantities into (31), we find

. Ty 42 Pg .3
=guh —& hg— 2 g, 32
Q Yolty -+ 2}& (4 3]1- 0 ( )

Let us combine (31) and (32)., By introducing the dimensionless variables and parameters;
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1
Z=L’L=Lvoo=ho(pg)2,Ca= B% g T,
ho ho

T g - (pgo)"2 (33)
we arrive at the differential equation
L dL BD D}
G =D+ 2oy 20 g (34)
3Ca  do ( )+ 2Ca( ) 3Ca (1—L3%
with the boundary conditions
L1, Edf__,o, Z’ZL 0 for z— oo. (35)

Let us seek the linearized solution of the problem (34) and (35). Let us set L =1 + &, where £(z) is a
small parameter, and we find by neglecting terms greater than the quadratic in ¢

L &L BD, Di° 36
L _a—n (1 o o) (36)
3Ca dz8 ( ) ( + Ca Ca )
Let us introduce the new variable
1
BD, D\l® 37
A= 2 — 0 :
[ 3Ca ( 14 G G )] z
Then
d3L _ 1—L (38)
dA3 L3
It has been shown in {1, 2] that
&L —0.64
d\? | Lew (39)

follows from the differential equation (38) with the boundary conditions (35). The juncture condition, i.e., the
equality of (3) and (39), yields

2
Y
0.64[3Ca ( 1+£c%“_%)]3=‘/7 D,

or

2

+ 4
D, 0.94(Ca+ BD, —D3)°. (40)

As follows from (3), formula (40) is valid in the case 2B < D, and determines the layer thickness h, for
known values of the rheological parameters 7, and p, the velocity of extraction vy, the surface tension coeffi-
cient o, and given values of p and g.

For Ca » BD, we find from (40) that
2
D, = 0.94(Ca—D}) *, (41)
i.e., the film thickness is independent of the plastic properties of the fluid. '

Thus, the layer thickness of a viscoplastic fluid is independent of Ca for extraction velocities Ca << BD,
and is determined from (27), which yields D, = f;(B). When Ca » BD,, the film thickness is independent of B
and is calculated from the relationship (41), where D; = f,(Ca).

In the general case of an arbitrary velocity of plate extraction, it is possible to write

D, = [ (B, Ca). 42)
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Fig. 1. Dependence of the film thickness D; on the ex~
traction velocity Ca for the plasticity parameter B: 1)
0.02; 2) 0.1; 3) 0.5.

Let us consider the rheological equation of state (7). It contains the equations of state of a viscous fluid
(Ty = 0) and of a plastic body (4 = 0) as limit cases, and combines them additively. The relations (28) and (41)
yield a solution of the problem in these two limit cases, Hence, let us represent the general interpolation for-
mula in the form of a sum of the two limit cases (28) and (41) according to the form of the rheological law (7):

" Dy = f,(B) + 4 (Ca). (43)

Certain results of calculations using (43) are represented in Fig. 1. Formula (43) goes over into the
limit cases Ca < BD; and Ca > BDy, respectively, in (28) and (41), which are given a theoretical foundation.
Moreover, the results determined by means of (43) and (40) agree quite well in the domain where the solution
(40) is valid. It can therefore be hoped that (43) possesses sufficient accuracy and correctly transfers the de-
pendence of Dy on Ca and B in the whole range of numbers Ca.
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